
Design Report
User Interface for a Digital Twin of a Business Park; Ecofactorij

Authors:
Daniar Baialiev - s2425548
Hristo Bizhev - s2855895
Jordan Sberlo - s2752751
Machiel Luning - s2795574
Sekai Ariji - s2731231
Yasin Omidi - s2730006

Supervisor:
Juan López Amézquita

Faculty of Electrical Engineering, Mathematics and Computer Science
TCS Design Project

Contents
Introduction..4

Stakeholders..4
Limitations and Constraints... 5

OpenRemote IoT Platform...5
Digital Twin API..5

System Requirements...6
Functional Requirements...6
Qualitative Requirements.. 6

Risk Analysis... 8
Design Process..9

Use Cases... 9
User - Assets Sequence.. 10
Rules and Alerts...11

Implementation.. 12
White Labeling... 12
OpenRemote Extensions...12

Line Diagrams..12
Forecast...12
Digital Twin Devices...13
Admin Config Asset... 13
Custom services.. 13

Integration.. 15
Models... 15

Historical data.. 15
Daily data...15
Attribute values.. 15

Forecasts... 15
Testing.. 17

API Resting..17
API Integration Testing...17

Models... 17
Forecasts... 17

User Testing...17
Discussion..19
Appendices.. 20

Appendix A: Project proposal.. 20
Appendix B: Class diagrams..24

B1...24
B2...25

2

Appendix C: API endpoints..26
C1.. 26
C2.. 26

Appendix D: Detailed testing breakdown...27
Appendix E: User testing protocol... 31
Appendix F: User guide... 34

3

Introduction
Ecofactorij is a sustainable business park located in Apeldoorn. At the heart of this business
park is a closed distribution system for electricity, which is completely owned by the cooperative
“Parkmanagement Ecofactorij” and is unique in the Netherlands. This allows businesses to
collaboratively manage energy consumption, which reduces costs and minimizes the
environmental impact.

A digital twin of this closed distribution system has been created, which by integrating real-time
data from various sources in the park can provide us with data such as energy usage patterns,
solar power generation, and battery storage efficiencies. It cannot however visualize this data at
the moment.

This report shows the design and development process for creating a user-friendly, interactive
web interface for the digital twin, intending to make the provided complex energy data easily
understandable and actionable, even for users without a technical background.

Stakeholders
The stakeholders that were identified for this project project are:

● CAES
● Juan López Amézquita - Client representative & Supervisor
● Ecofactorij - Client
● Current companies located at Ecofactorij:

○ Ameco
○ Breads Chemistry
○ Campus Woudhuis
○ Greenferm
○ Grolleman Coldstore
○ ID Logistics
○ Harbers Trucks
○ ITB2 Data centers
○ Royal Oosterberg
○ Preco
○ SILS
○ Sparkling Projects
○ VDL Weweeler
○ Wasco B.V.

4

Limitations and Constraints

OpenRemote IoT Platform
As a requirement for this system, OpenRemote provides us with a simplified design process and
access to some pre-existing features, improving our efficiency in delivering a finished product on
time. However, being limited to OpenRemote meant we had less agency over design choices,
especially regarding user experience. OpenRemote provides an intuitive and simple layout but
introduces some restrictions to the developers and reinforces existing architectural processes,
some of which do not align with our client's vision. A notable example was the lack of support for
historical data points, for which we ended up implementing our own service.

Digital Twin API
Before the design and implementation of this system, an API had already been partially
developed to access the data measuring the physical twin. While drafting the requirements of
the system, many of the endpoints were not yet functional but had to be accounted for in the
final product. As the front end was being developed, so was the API and adjustments had to be
made accordingly. This meant that some features were prioritized based on data availability at
the time. However, the data structure and type had remained more or less consistent.
Additionally, since the API was developed alongside the front end, some unexpected issues and
bugs occurred, which had an impact on the efficiency of development. As a consequence, some
features may be more polished than others.

5

System Requirements
The following requirements are essential to guide the design and development of the project.
They outline the functional and user experience specifications necessary to achieve the
project’s goals and ensure we meet the stakeholders’ expectations.

Functional Requirements
● The system must display parameters of Ecofactorij devices such as batteries, circuits,

heat storage loads, and PV (Photovoltaic)

○ As a user, I want to see the amount of energy generated by each PV

○ As a user, I want to see the efficiency of each PV

○ As a user, I want to see the parameters of a battery such as discharge and
efficiency

○ As a user, I want to see heat storage load efficiency

○ As a user, I want to see active and reactive loads (consumption patterns)

● The system must implement access control, where user's privileges are defined upon
the creation of their accounts.

● As an admin, I want to be able to create accounts with different permissions and access
levels.

● The system must fetch the data from the API and update the database regularly.

○ PV, circuits, and battery parameters must be fetched every 5 minutes.

○ All other data must be fetched every 24 hours.

● As an admin, I want to set global static parameters, such as lag_time presets and
thresholds for firing notifications.

● As a user, I want to see a map with the locations of all the connected devices

○ As a user I want to see information about said device when selecting it on the
map.

● As a user, I want to receive a notification when certain asset parameters break through a
threshold set by a system administrator

● As a user, I want to be able to visualize asset data in graphs.

○ As a user, I want to be able to see the standard deviation values as error bands
on the graph.

● As a user, I want to be able to see the forecast data in a graph with error bands.

Qualitative Requirements
● The UI should be understandable and actionable, even for users without a technical

background.

6

● The UI should be displayed on Mobile and Desktop displays.
● The system must integrate with the external digital twin API
● The system must be deployable on any operating system by using Docker
● The system color palette and design should align with Ecofactorij’s design

7

Risk Analysis
Failure to understand system requirements fully could lead to incomplete systems, which poses
a significant risk. To mitigate this, we have interviewed the client at multiple stages of
development to gain an understanding of their needs and expectations and prepared a
document that clearly defines the system requirements.

Another risk associated with the development of the digital twin is the dependency on the
OpenRemote platform. The platform may have limitations, bugs, or unforeseen constraints that
could affect the development of the digital twin. To address this, we conducted early research
into the usage of OpenRemote to discover potential limitations and plan accordingly.

Additionally, inaccuracies in energy data or failure to update data in real time could lead to faulty
visualizations based on incorrect information, which poses a risk. To mitigate this, it is necessary
to regularly test the API integration with the digital twin to ensure real-time data is being
accurately processed and displayed. Implementing error handling to identify and resolve any
inaccuracies in data also helps to ensure the integrity and accuracy of the information presented
in the digital twin.

8

Design Process
Upon contacting the client, our team requested a meeting in which we could gain a thorough
understanding of the system and the desired functionality. Based on the information gathered in
that initial meeting, we have drafted a proposal, including our technical and qualitative
assessment of the desired product (see Appendix A). After communication with the client and
refinements to the proposal, it had been approved and we had our system requirements
finalized. We proceeded to meet the client on a weekly basis to gather valuable feedback and
stay informed about changes to the API.

Use Cases

Once all use cases were identified, we explored the tools provided by OpenRemote to see
which use cases could be realized with existing features, and which had to be implemented.
OpenRemote appeared to offer most of the functionalities we needed for the system with few
exceptions such as error bands.

9

User - Assets Sequence
The OpenRemote Manager Server (ORMS) was deployed on a dedicated docker container so
that it can run in a variety of environments. While Ecofactorij’s database is continuously logging
the output coming from the sensors, the ORMS periodically sends requests through the API.
Some parameters are being updated every 24 hours, while others every 5 minutes, based on
(see requirements). This was done in order to avoid direct interaction between the front end and
the Ecofactorij database and to improve the overall responsiveness and security of the system.

This diagram illustrates the flow of information between the different components of the system.
The physical twin provides constant data output to the digital twin, while the front-end ORMS
periodically fetches this data.

10

Rules and Alerts
The ability to define rules for certain alerts is a key part of the system. For example, it may be
desirable for the user to know when the battery voltage drops below critically low levels, or if a
circuit temperature is critically high. OpenRemote offers a variety of rules to be set. In our case,
“When - Then” rules serve our purpose perfectly. The (Admin) user has the ability to select an
asset or a class of assets and set a “When” condition to fit their criteria. Once the (Admin) user
sets the condition, they are prompted to provide a “Then” response. Here they can decide the
severity level (1~3) of this event.

11

Implementation
This section describes the core customizations and extensions applied to OpenRemote to meet
the specific requirements. These modifications were necessary to support digital twin
integration, enhance data visualization, and provide administrative control of forecasts and
asset data.

White Labeling
White labeling OpenRemote involved customizing the OpenRemote platform to replace its
original branding and map with that of Ecofactorij. To change the logos, one would normally use
a configuration file to instruct OpenRemote to use the custom logos, as explained in their
documentation. This however didn’t work for us and thus we had to replace the original files,
which did work.
For the map, we used OpenStreetMap, which has a vector tile map of the Netherlands. We
needed to extract a smaller tileset from this map since we only require a map of the business
park. For this, we followed the steps outlined in the documentation of OpenRemote.

OpenRemote Extensions

Line Diagrams
We extended the functionality of line diagrams from the base implementation of OpenRemote by
adding support for error bands and forecasts.

Error Bands
To implement the support for error bands, we had to modify the or-chart and
or-dashboard-builder components. In the or-dashboard-builder component, we extended the
settings menu for the line chart to include a toggle to show or hide the error bands.
In the or-chart component, we extended the data retrieval process to also fetch the standard
deviation data points if they exist for the given attribute. In order to also support this feature for
forecasts, we had to change this slightly since forecasts don’t provide us with a single standard
deviation value, but with upper and lower bounds for the error bands.
During the rendering process, we check the settings for the chart, and if the showing of error
bands is selected we then add these to the chart. If something goes wrong with this, we make
sure that the main data is always rendered.

Forecast
OpenRemote already has some support for forecasts but it offers very little flexibility in its
implementation and customization with the only available forecast method being weighted
exponential averaging. However, we decided not to use this built-in forecast functionality since it

12

did not support error bands and it could not be integrated with the forecast API provided and
required by our client.
To get around that limitation we implemented the forecasts by creating a child forecast asset
and inserting the forecast data into the future data points of that attribute. So the forecasts can
be viewed by the user by graphing it in their custom dashboard like they would any other asset
attribute. Additionally, we added a “Next 3 days” data range option which would set the range of
the graph to be 3 days into the future, giving a complete overview of the forecast. This approach
also allowed for the same error bands implementation to work with forecasts as well as historical
data.

Digital Twin Devices
OpenRemote has some predefined “assets” to represent different devices. Some assets, like PV
and Load assets, already existed within these predefined assets. However, the circuit and
batteries were missing. Additionally, the predefined PV and Load asset included some attributes
that we didn't need which cluttered the UI and also there were some missing attributes that we
did need. So we decided to not use these predefined assets and implement a custom asset for
each of the devices from the DT API with all the attributes returned by the API. These assets
are listed in Appendix B1.
This setup allowed us full control over these Ecofactorij assets without having to modify the
original OpenRemote code.

Admin Config Asset
This asset holds the configuration data of the to-be-fetched forecasts and the 5 min. requests.
Admins will be able to change the horizon period (between 15 minutes, an hour, a day, and 3
days) and resolution points (between 1 minute, 15 minutes, and an hour) of the forecasts and
set a certain number of days for the lag time of the 5 min. data. The default parameters for the
asset are a 3-day horizon, 1-minute resolution, and 7(days) of lag time.

Custom services
In order to fetch, process, and store the data from the digital twin API we had to implement
some services. The class diagram of custom services is in Appendix B2

DAO (Data Access Object)
While most of the endpoints of the DT API return some form of historical data, the standard
implementation of OpenRemote has no support for inserting data points in the past. Which is a
limitation we discovered pretty early on. To work around this limitation we implemented the DAO
service which extends the OpenRemote AssetStorageService with additional capabilities, most
notably the ability to insert data points into the historical or future record of an asset.

13

DigitalTwinHTTPclient
In order to communicate with the API we made a custom HTTP client that can take relevant
parameters and generate a request to send to the desired API and route and ultimately return
the response.

AssetCreationService/AssetUpdateService/AssetForecastService
We implemented the asset creation, update, and forecast services that use the
DigitalTwinHTTPclient to fetch the data. They then process and transform the returned
responses into a data object which can then be stored in the database with the help of the DAO.
These services are used in scheduled events to regularly update the data.

AdminConfigService
The purpose of the admin config asset is to ensure that the adminConfig asset always exists. If
it doesn’t exists the service assigns the default values for admin parameters: Horizon.DAY_3,
Resolution.HOUR_1, lag_time = 7. Additionally, this service retrieves the parameters from
the Admin asset.

14

Integration
The custom http client was a handy tool for integrating the Digital Twin API system with our
project. This client facilitated API-compliant requests, enabling consistent interaction with the
Digital Twin system. It efficiently handled scenarios where API connections were unavailable or
when responses were empty or unexpected, aborting the update process gracefully to prevent
errors.

Models
The AssetUpdateService manages data updates by retrieving information from the /models API
through the DigitalTwinHTTPclient and updating the data via the DAO object.

Historical data
Updating historical data in OpenRemote was straightforward. All of the endpoints with no
“Hours” array shown in diagram Appendix C1 had timestamps which allowed for direct
timestamp-based updates. The only data cleaning done for this type of data was disregarded of
the null values. The historical data entries are highlighted in green within the Appendix B1
diagram.

Daily data
For data recorded in arrays of length 24 (e.g., seasonal efficiencies), we had to invent a
workaround to be able to store and view it, as OpenRemote only supports timestamped data.
We decided to assign timestamps of a current day to each datapoint and assign hours from the
hours array. This method enabled visualization, allowing users to select a “current day” view
option, represented as an abstract day in diagrams. This data is marked by yellow colour on the
diagram Appendix B1. Additionally, we set up a one-day age limit for this type of data.

Attribute values
Asset attribute values reflect the latest state of each parameter and are shown in the overview
of an asset. We need to update these values for the most recent historical data points and the
current data of an asset highlighted in blue in the Appendix B1 diagram. However, updating
these values created a new historical data point due to the OpenRemote treating the data with
timestamps in the past with low priority, assigning it a new timestamp with a current system
time. This core OpenRemote implementation was altered to integrate it with our project. Now,
timestamps are only assigned when none are available, avoiding unnecessary updates to
timestamps when attribute values are added.

Forecasts
Forecast integration required a unique approach to the request construction, as the forecast API
endpoints (Appendix C2) used parameters in the request body rather than the URL. A different

15

set of methods was implemented in DigitalTwinHTTPclient for this purpose. The resolution and
horizon parameters are supplied by AdminConfigService as mentioned in the sections above.
Additionally, the Forecasts required constant wiping, because after a new forecast is created,
the old data is obsolete, so the wipeForecast() method was implemented in
AssetForecastService.

16

Testing
Testing plays a vital role in ensuring data accuracy, system functionality, and a user-friendly
experience when developing a user interface for the digital twin within OpenRemote. The testing
has been split into three different parts, consisting of the testing of the digital twin’s API, the
testing of the integration of this API into OpenRemote, and finally user testing. The testing of the
API and its integration are done in Groovy and make use of the Spock framework. A detailed
testing breakdown of these tests can be found in Appendix D.

API Resting
The purpose of the testing of the digital twin’s API is to verify that the responses received from
the digital twin are structured and formatted as expected. This is done due to the ongoing
development of the digital twin and differently structured and/or formatted responses from the
API would result in errors when trying to parse this data, which would further result in the data
not being shown correctly or being absent.

API Integration Testing
The API integration testing is done in order to verify that the data from the digital twin’s API is
accurately and completely integrated into OpenRemote, ensuring that the data is displayed
correctly in the interface. This API testing has been split into two different parts, each of them
testing the integration of a different part of the digital twin.

Models
In this part, we verify the data from the models part of the digital twin. This includes verifying that
an asset is created in OpenRemote for each device in the digital twin. Furthermore, for each
endpoint, we compare the data from the digital twin with the data that has been inserted into
OpenRemote, ensuring that there are no differences and that the data is complete.

Forecasts
In this part, we verify the data from the forecasts part of the digital twin. For each device, we
check if we have created a forecast asset in OpenRemote if there exists a forecast for that
device. However, unlike the models testing, we can only verify that there are a correct amount of
data points in OpenRemote, since the values of the forecast change slightly each time a
forecast is requested from the digital twin.

User Testing
User testing was conducted to evaluate the functionality and user experience of the system.
This user test emphasizes qualitative analysis and is conducted with a direct customer who is

17

familiar with the OpenRemote system we used and with a general user who is not familiar with
the OpenRemote system at all.
In order to facilitate smooth user testing, a protocol for conducting this test was created
beforehand (see Appendix E).

What User testing revealed
The test was conducted with two types of participants, and although there were some points
where the complexity of the user interface design made participants confused, we were able to
confirm that both participants were able to smoothly follow the instructions given.
From this testing, we were able to find points that users found complicated, unnecessary system
choices, and bugs. In addition, the overall design and placement of each functionality were
found to be intuitive and easy for users to understand. The feedback also allowed us to make
further user-friendliness improvements, such as adding user guide documentation on the
system.

18

Discussion
Throughout the project, we met regularly with our supervisor on a weekly basis, communicated
mainly via Teams, and carefully implemented the system to ensure that the system met the
client’s needs. Comparing the initial system requirements listed in the project proposal with the
final system requirements, it can be seen that there is no significant difference between the two
system requirements. The final system requirements included more detailed descriptions of
several points than the initial system requirements, and these points evolved through
communication with our supervisor during the implementation process. Focusing on
user-friendliness for people of various backgrounds, frequent communication with the supervisor
helped to align development with specific functional needs.

Challenges
OpenRemote had advantages in built-in functionality and ease of integration, but limited
customization in several areas. As it was mentioned earlier, OpenRemote does not support
inserting historical data points, so implementation of the DAO service was required to process
past and future data entries. Furthermore, while OpenRemote supports forecasting, there was
little flexibility in implementation and customization, so forecasting was implemented by creating
child forecasting assets and inserting the forecast data into the future data points for that
attribute.

Future improvements
As for future improvements, the development of an email server to notify important personnel of
critical alarms via email and remove all asset types that aren’t part of the physical twin, that is,
when the system starts it only loads asset types that exist in the database could be considered.

Additionally, the performance of the software may be a factor to consider. It takes around 15-17
minutes to update 5m+24h data and there are only 20 devices currently in the system. There
are a couple of ways to make the update process more efficient:

● Insert data points in bulk. Currently, the system inserts the Datapoints in the DB using
insert(List<AssetDatapoint> assetDataList)method one by one. This can be
modified to insert the values in parallel, for example by utilising PgBulkInsert

functionality.
● More efficient handling of null values. The null values are discarded late in the update

process, a bit before inserting them in the DB. By discarding them early, we could
remove the overhead, improving performance of the system

● More efficient Http calls. Http calls take the majority of update time and most of them are
inefficient. For example, the minimum lag_time is 7 days, but the system only actually
updates last 5 minutes and the rest is rewriting the same data. This process can be
improved by making the calls in parallel or removing unnecessary overhead. However,
that will require additional changes on the Digital Twin part.

19

Appendices
Appendix A: Project proposal

Project Proposal
User Interface for a Digital Twin of a Business Park using
OpenRemote
Group 8: Daniar Baialiev Sekai Ariji Hristo Bizhev Jordan Sberlo
Machiel Luning Yasin Omidi

Supervisor: Juan López Amézquita; j.c.lopezamezquita@utwente.nl

Introduction
This document outlines the project requirements approved by our client, Juan López Amézquita,
and provides a detailed plan for the development of a web-based user interface (UI) for a digital
twin of a business park in the Netherlands known as "Ecofactorij." The digital twin is designed to
visualize and monitor real-time energy data and improve energy efficiency through smart energy
systems.

The goal of the project is to develop a user-friendly and intuitive interface using OpenRemote,
an open-source platform for Internet of Things (IoT) applications. The UI will allow users to
easily monitor energy production and usage, battery storage efficiency, and other critical
metrics. Additionally, it will enable users to configure the system, adjust backend settings, and
set alerts for specific events, such as when energy consumption exceeds a defined threshold.

Functional requirements
● The system must display parameters of Ecofactorij devices such as batteries, circuits,

heat storage loads, and PV(Photovoltaic)

○ As a user, I want to see the amount of energy generated by PV

○ As a user, I want to see the efficiency of each PV

○ As a user, I want to see the parameters of a battery such as discharge or
efficiency

○ As a user, I want to see heat storage efficiency

○ As a user, I want to see active and reactive loads (consumption patterns)

● The system must implement role-based access control, where roles are defined as the
companies located at Ecofactorij. In OpenRemote terminology, these roles are referred
to as “Realms”.

● As a user, I want to see a map with the locations of all the connected devices

20

mailto:d.baialiev@student.utwente.nl
mailto:s.ariji@student.utwente.nl
mailto:h.bizhev@student.utwente.nl
mailto:y.sberlo@student.utwente.nl
mailto:m.luning@student.utwente.nl
mailto:y.omidi@student.utwente.nl

● As an admin, I want to set global static parameters, such as lag_time or a threshold for
firing a notification

● As a user, I want to receive an email when certain parameters break through a threshold
set by a system administrator

○ As a user, I want to get an alarm when PV efficiency gets lower than the
threshold

○ As a user, I want to get an alarm when battery efficiency gets lower than the
threshold

● As a user, I want to be able to visualize data in graphs with standard deviation values.

○ As a user, I want to see the graph of active loads in autumn during weekdays.

● As an admin, I want to be able to create accounts with different permissions and access
levels.

● As a user, I want to fetch and update the API data manually.

Note: The list of functional requirements will be extended with an addition of modules currently
in development, such as State Estimator and Forecaster

Qualitative requirements
● The UI should be understandable and actionable, even for users without a technical

background.
● The UI should be displayed on Mobile and Desktop displays.
● The system must integrate with external digital twin API
● The system must be deployable on any operating system by using Docker
● The system must fetch data from other APIs once in 24 hours
● The system color palette and design should align with Ecofactorij’s design

Planning
The deliverables of the project are as follows: Project proposal, Design and testing report,
OpenRemote application, Usage Manual and Documentation, and finally a poster and
presentation.

The following timeline was made of tasks required to complete these deliverables.

21

Testing strategy
Continuous unit testing will be performed during the whole development cycle. Additionally,
there will be a final system and integration testing stage that will take place during the last week
of implementation. This stage is crucial to provide a good quality product for the client.

The primary objectives of the testing phase are:
● Functional validation: Identifying and fixing issues related to incorrect system behavior.
● Usability testing: providing better usability by ensuring that the interface is intuitive and

easy to navigate.
● Integration Testing: Ensure seamless integration between the UI and backend systems

such as the OpenRemote platform and digital twin components.

Testing methods:
● Unit testing: Automated JUnit tests.
● API unit tests: Since the API is still in active development, all used API routes will be put

under test to validate that the API response matches the expected structure.
● Integration testing: Continuous manual integration testing by developers.
● User acceptance testing with the client. Since user-friendliness of the interface is the

main aim of the project, the development team will iteratively perform user acceptance
testing with the client.

Risk analysis
Failure to understand system requirements:

Risk: Failure to understand system requirements fully, leading to incomplete systems.
Mitigation: Interview clients at an early stage and prepare a document that clearly
defines system requirements.

OpenRemote platform dependency:
Risk: The platform may have limitations, bugs, or unforeseen constraints that could
affect the development of the DT.

22

Mitigation: Early research into the usage of OpenRemote to discover potential
limitations and develop solutions to work around the limitation.

Data Integrity and Accuracy:
Risk: Inaccuracies in energy data or failure to update data in real time could lead to
faulty visualizations based on incorrect information.
Mitigation: Regularly test the API integration with the digital twin to ensure real-time
data is being accurately processed and displayed. Implement error handling to identify
and resolve any inaccuracies in data.

Stakeholders
Ecofactorij: https://ecofactorij.nl/
Client: Juan López Amézquita
Current companies located at Ecofactorij: Ameco, Breads Chemistry, Campus Woudhuis,
Greenferm, Grolleman Coldstore, ID Logistics, Harbers Trucks, ITB2 Data centers, Royal
Oosterberg, Preco, SILS, Sparkling Projects, VDL Weweeler, Wasco B.V.

Limitations and constraints
Obligation to use Open Remote
Dependence on Digital Twin API
Digital twin for monitoring purposes only

Project organization
Communication
Communication with the client is set up through Microsoft Teams and emails. Weekly meetings
will be scheduled primarily on Mondays to provide updates, get feedback, and discuss progress.
For internal team communications, we will use Discord. Additionally, internal meetings will be
scheduled 2-3 times per week to review tasks, discuss issues, and keep everyone updated and
on track with the project.

Responsibilities
We will adopt a flexible and collaborative approach to distributing responsibilities within the team
for this project. The responsibilities are divided among UI design, implementation,
documentation, testing, and other project components. We take into account each team
member’s technical skills and experience with the relevant tools as well as their interest in
particular aspects of the digital twin development.

To maintain a balanced workload and ensure that everyone is contributing fairly, we hold regular
meetings where tasks are reassessed and adjusted as needed. During these meetings, we
provide updates on our progress, address any challenges, and redistribute responsibilities if
certain tasks require additional support or focus. This collaborative process ensures the team
remains aligned with the project’s goals.

23

https://ecofactorij.nl/

Appendix B: Class diagrams

B1

24

B2

25

Appendix C: API endpoints

C1

C2

26

Appendix D: Detailed testing breakdown

Test name Purpose Expected result Test file

1 Check creation of
assets in
OpenRemote

Verify that for each device
an asset has been
created in OpenRemote

Pass; For all
devices, there exists
a corresponding
asset

TestDT_Models_
to_OpenRemote
.groovy

2 Check 5 min data
per lag time PVs

Verify per PV that its
5-minute data has been
correctly put into
OpenRemote

Pass; For all PVs,
the 5-minute data is
correct

TestDT_Models_
to_OpenRemote
.groovy

3 Check 5 min data
per lag time
Batteries

Verify per battery that its
5-minute data has been
correctly put into
OpenRemote

Pass; For all
batteries, the
5-minute data is
correct*

TestDT_Models_
to_OpenRemote
.groovy

4 Check 5 min data
per lag time
Circuits

Verify per circuit that its
5-minute data has been
correctly put into
OpenRemote

Pass; For all
circuits, the
5-minute data is
correct

TestDT_Models_
to_OpenRemote
.groovy

5 Check creation of
configuration
asset

Verify that the admin
configuration asset has
been created in
OpenRemote

Pass; The admin
configuration asset
has been created

TestDT_Models_
to_OpenRemote
.groovy

6 Check Bess
parameters for
batteries

Verify per battery that its
BESS parameters have
been correctly put into
OpenRemote

Pass; For all
batteries, the BESS
parameters are
correct

TestDT_Models_
to_OpenRemote
.groovy

7 Check impedance
parameters for
circuits

Verify per circuit that its
impedance parameters
have been correctly put
into OpenRemote

Pass; For all
circuits, the
impedance
parameters are
correct

TestDT_Models_
to_OpenRemote
.groovy

8 Check 5 min
efficiency per lag
time PVs

Verify per PV that its
5-minute efficiency data
has been correctly put
into OpenRemote

Pass; For all PVs,
the 5-minute
efficiency data is
correct

TestDT_Models_
to_OpenRemote
.groovy

9 Check 1 hour
efficiency per
season PVs

Verify per PV that its
1-hour efficiency data has
been correctly put into
OpenRemote

Pass; For all PVs,
the 1-hour efficiency
data is correct

TestDT_Models_
to_OpenRemote
.groovy

27

10 Check 1 hour ZIP
per season Loads

Verify per load that its ZIP
data has been correctly
put into OpenRemote

Pass; For all loads,
the ZIP data is
correct

TestDT_Models_
to_OpenRemote
.groovy

11 Check 1 hour
data per season
Loads

Verify per load that its
1-hour data has been
correctly put into
OpenRemote

Pass; For all loads,
the 1-hour data is
correct

TestDT_Models_
to_OpenRemote
.groovy

12 Check 1 hour
data per season
Loads (only Hz
for PV)

Verify per PV that its
1-hour Hz data has been
correctly put into
OpenRemmote

Pass; For all PVs,
the 1-hour Hz data
is correct

TestDT_Models_
to_OpenRemote
.groovy

13 Check 1 hour
correlation per
season per
parameter Loads

Verify per load that its
correlation data has been
correctly put into
OpenRemote

Pass; For all loads,
the correlation data
is correct

TestDT_Models_
to_OpenRemote
.groovy

14 Check creation of
forecasts in
OpenRemote

Verify that a forecast
asset is created if it exists
in the digital twin and that
the forecast consists of
the correct amount of
data points

Pass; For all
available forecasts,
there exists a
corresponding asset
with the correct
amount of data
points.

TestDT_Forecas
ts_to_OpenRem
ote.groovy

15 Get names of
devices -
Batteries

Verify that the response
for batteries from the
digital twin contains a key
“batteries_list” and its
value is not null

Pass; The response
to get the batteries
from the digital twin
is as expected

TestAPI.groovy

16 Get names of
devices - Circuits

Verify that the response
for circuits from the digital
twin contains a key
“circuits_list” and its value
is not null

Pass; The response
to get the circuits
from the digital twin
is as expected

TestAPI.groovy

17 Get names of
devices - Loads

Verify that the response
for loads from the digital
twin contains a key
“loads_list” and its value
is not null

Pass; The response
to get the loads
from the digital twin
is as expected

TestAPI.groovy

18 Get names
devices - PVs

Verify that the response
for PVs from the digital
twin contains a key
“pvs_list” and its value is
not null

Pass; The response
to get the PVs from
the digital twin is as
expected

TestAPI.groovy

28

19 Data per load per
season

Verify that the response
for 1-hour data per
season per load contains
the right parameters and
their value is the correct
type

Pass; The response
to get the 1-hour
data per season per
load from the digital
twin is as expected

TestAPI.groovy

20 Verify no null
values in ZIP
coefficient lists

Verify that the response
for the ZIP data contains
no null values

Pass; The response
to get the ZIP data
from the digital twin
is as expected

TestAPI.groovy

21 Hourly correlation
per season,
param, load

Verify that the response
for the 1-hour correlation
data is of the correct type
and size

Pass; The response
to get the 1-hour
correlation data
from the digital twin
is as expected

TestAPI.groovy

22 Hourly data per
season per PV

Verify that the response
for 1-hour data per
season per PV contains
the right parameters and
their value is the correct
type

Pass; The response
to get the 1-hour
data per season per
PV from the digital
twin is as expected

TestAPI.groovy

23 Hourly efficiency
per season per
PV

Verify that the response
for 1-hour efficiency data
contains the right
parameters and is of the
correct size

Pass; The response
to get the 1-hour
efficiency data from
the digital twin is as
expected

TestAPI.goovy

24 5min data per pv
- lag time

Verify that the response
for 5-minute data per pv
contains the right
parameters and their
value is the correct type

Pass; The response
to get the 5-minute
data per pv from the
digital twin is as
expected

TestAPI.groovy

25 5min efficiency
per pv - lag time

Verify that the response
for 5-minute efficiency
data contains the right
parameters and is of the
correct size

Pass; The response
to get the 5-minute
efficiency data from
the digital twin is as
expected

TestAPI.groovy

26 5min data per
battery - lag time

Verify that the response
for 5-minute data per
battery contains the right
parameters and their
value is the correct type

Pass; The response
to get the 5-minute
date per battery
from the digital twin
is as expected

TestAPI.groovy

27 5min bess param
per battery - lag

Verify that the response
for BESS parameters

Pass; The response
to get the BESS

TestAPI.groovy

29

time contains the right
parameters and their
value is the correct type

parameters from the
digital twin is as
expected

28 5min data per
circuit - lag time

Verify that the response
for 5-minute data per
circuit contains the right
parameters and their
value is the correct type

Pass; The response
to get the 5-minute
data per circuit from
the digital twin is as
expected

TestAPI.groovy

29 5min impedance
per circuit - lag
time

Verify that the response
for the impedance
parameters contains the
right parameters

Pass; The response
to get the
impedance
parameters from the
digital twin is as
expected

TestAPI.groovy

If a test from TestDT_Models_to_OpenRemote.groovy or
TestDT_Forecasts_to_OpenRemote.groovy fails, OpenRemote may not have been updated
with the latest data from the digital twin yet. Trying again later after the data has been updated
might resolve it.

30

Appendix E: User testing protocol

User Testing
Introduction
In part of delivering a complete product, user testing is invaluable in evaluating the functionality
and user-experience of our system. In the case of our product, user tests are conducted with the
direct client, with an emphasis on qualitative analysis.

Goals
In these tests our aim is to assess the following aspects of our platform:

● Usability - How long does it take users to complete certain actions?
● Experience - Are users satisfied with the product? How can it be improved?
● Features - uncovering usability issues and or identifying missing features

Method
Interact
Users are given a series of tasks to be completed:

1. As a user, locate BATTERY_1 in the interactive map page and view its data, then press
view.

2. As a user, locate Circuit M13_to_M300 in the assets page and generate a graph
showing the active power to phase 1. Then change the time-frame.

3. As an admin, add a when-then rule that creates an alarm whenever the voltage of PV
drops below 3.5V.

For ‘When’ select PV and set parameter
For ‘Then’ select alarm

4. As an admin, create a user with only read permission.
5. As an admin, create a dashboard in the insights page, create a line chart and add

attributes: current from phase 1,2 and 3 of circuit M13_to_M300.
6. As an admin, freely interact with the platform for 60 seconds.

Record
User interactions are recorded using OBS with Input Overlay plugin
(https://obsproject.com/forum/resources/input-overlay.552/). These recordings are then
analyzed for time and error rate of each individual task. For error detection, the recordings are
reviewed by comparing user input behavior, and system response. In cases where user input
results in an unexpected response, it is flagged as an error.
Interview

31

https://obsproject.com/forum/resources/input-overlay.552/

This section will focus on evaluating the user-experience and features of the system. Our users
are interviewed immediately upon completing the interaction. The questions are as follows:

1. How easy was it to find the specific assets or data you were looking for?
2. Were there any points where you felt lost or confused about where to go next
3. How would you rate the overall design and layout of the platform? Did it feel intuitive?
4. Were there any issues you encountered with existing features?
5. What improvements or additional features would enhance your experience using the

platform?

Prototype testing
OUTCOMES: PUT EVERYTHING IN THE ASSET NAMES
M13

In this part of the user testing, we will evaluate three different frontend design prototypes for
displaying asset data (load_zip, pv_efficiencies_seasonal, and load_correlation). Each prototype
presents a different approach to organizing asset parameters between asset names and
attribute names. This part of the test will assess which approach users find more intuitive and
easy to navigate.

Prototypes Description:
Prototype 1 - All Parameters in Attribute Names:

In this prototype, all relevant parameters are appended to the attribute names. The asset names
remain as the core identifiers, while the specific parameters are distinguished through the
attributes associated with each asset.
Prototype 2 - All Parameters in Asset Names:

32

This prototype places all parameters within the asset names themselves. Here, asset names are
more detailed, containing both the asset identifier and its associated parameters. The attribute
names remain basic and unchanged.
Prototype 3 - Combined Method:

In the combined method, some parameters are assigned to the asset names, while others are
appended to the attribute names. This approach aims to strike a balance, potentially making it
easier to filter or search for assets, while keeping detailed parameter information accessible in
the attributes.
Task:
Users will be asked to interact with each of the three prototypes and complete a set of
predefined tasks (e.g., locating specific assets, generating graphs, setting parameters). During
the interaction, they will be asked to provide feedback on the usability, clarity, and efficiency of
each prototype.

Question:
Customization:
After testing the three prototypes, users will be asked: If you could choose how to distribute
parameters between asset names and attribute names, how would you arrange them? Which
parameters would you prefer to see in the asset names, and which ones in the attribute names?
This question will help us understand user preferences for organizing information, providing
valuable insights into how we can allow for more flexible, user-defined customization in future
designs.

33

Appendix F: User guide
Below is the user guide for our application.

User Guide
OpenRemote User-Interface for Ecofactorij

34

Authors:
Daniar Baialiev
Hristo Bizhev
Jordan Sberlo
Machiel Luning
Sekai Ariji
Yasin Omidi

Supervisor:
Juan López Amézquita

Introduction
The user interface shares many of its functionalities with the OpenRemote default interface and
will therefore behave similarly in most cases. However, some features were changed and new
ones were added specifically for the application requested by Ecofactorij. This manual provides
a step-by-step guide for each of the functionalities offered by the system, including pictures and
examples.

If you are looking to perform a specific task please refer to the table of contents below:

Introduction..
Users...

Regular Users & Service Users...
Creating New Users...

Permissions...
Map..

Viewing Assets...
Assets...

Generating History Graphs..
Linked Alarms..

Insights...
Setting up a Dashboard...
Forecast...

Rules...
Create Rules..
When-Then Rules..
Flow Rules...
Groovy Rules...

35

Users
By default the system is provided with an admin user account, with
access to view, create, modify, and delete additional users. Only the
admin account has the ability to manage other accounts and should
therefore be secured appropriately. To navigate to the Users page, click
on the three dots on the top right of the page, then select Users.

Regular Users & Service Users
OpenRemote allows the creation of two types of users, Regular Users
and Service Users. Within the context of our application, Service Users
have no purpose. All new users should be created as Regular Users to
avoid issues.

Creating New Users
To create a new user simply press + ADD USER

You will be forwarded to the following page where you will have to insert the user credentials.
The system only requires a username and password for an account to be functional.

36

Permissions
Before creating a user it is important to set their permissions accordingly. If the user is intended
as an administrator or manager, perhaps giving them write permissions to certain functions is
necessary. This is where you decide how much control to give the user.

When you’re done, simply press CREATE at the bottom right to save that user in the database.

Map
The user interface features a map of the Ecofactorij area. It provides an aerial representation of
the property with coordinates resembling the different meters on the premise. Users may press
on their desired meter and a window will appear on the right side, showing an overview of its
attributes.

Viewing Assets
To get more information about that meter, users can press on VIEW which will direct them to the
assets page. (Refer to the screenshot below)

37

Assets
The Assets page allows users to view a more detailed overview of the asset's attributes. It also
allows users to generate a line chart, visualizing the historical data provided by each meter.

38

Generating History Graphs
To view historical data, select the attribute that
you’d like to visualize. An interface will appear
that will allow you to choose specific timeframes
and dates for which to provide visualized data.
Please note that the date only sets the end date.
Meaning if for example, you’d like to see the data
from the last week, select today's date and
change the timeframe to WEEKLY.

Linked Alarms
Under History, some assets will have a section
titled LINKED ALARMS. In case any alarms have
been triggered by this asset, they will show up in
this section, ranked by severity.

Insights
This page allows users to create their own dashboards by adding widgets.

39

Setting up a Dashboard
Users may press + to create their own dashboard. In the dashboard, widgets can be added by
dragging them onto the dashboard.

Forecast
Users may see the forecast for an asset by following the process below:
Drag the Line chart widget onto the dashboard -> Select attribute forecast for specific asset ->
Click show error band -> Set time to next 3 days

Rules
The rules page allows users to view/create
rules. Users with read:rules or write:rules
permission may view/create rules. To
navigate to the rule page, click on the rules
at the top of the page.

Create Rules
To create a new rule, select + and select
the type of rule that the user wants to
create.

40

When-Then Rules

In the When-Then rule, users may set a rule with When (the condition) and Then (the action
when the condition is met) attributes. In the When section, the user may select an asset,
attribute, operator, or voltage that the user wants to have as a condition. In the Then section, the
user may select the action the user wants to perform when the condition in the When section is
met.

By selecting the ALWAYS ACTIVE
section, users may choose the rule
activity from always active, plan an
occurrence, or plan a repeating
occurrence.

Flow Rules
Flow Rules are intended for application users to perform attribute value conversions. The main
purpose is to enable the linking of attributes (e.g. a Battery with a PV), or to process attributes to
generate new 'virtual' attributes (e.g. calculating energy consumption as the sum of three
individual meters). For more details, see Flow Rules.

Groovy Rules

41

https://docs.openremote.io/docs/user-guide/rules-and-forecasting/flow-rules

The Groovy Rules scripting editor can be used for complex rules. They have the most flexibility,
but also need a clear understanding of the Groovy language, especially to avoid mistakes. For
more details, see Groovy Rules.

42

https://docs.openremote.io/docs/user-guide/rules-and-forecasting/groovy-rules

